Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22.572
1.
Proc Natl Acad Sci U S A ; 121(20): e2401398121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38728227

Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.


Forests , Nitrogen , Plant Leaves , Trees , Nitrogen/metabolism , Nitrogen/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Trees/metabolism , Carbon/metabolism , Carbon/chemistry , Ecosystem , Taiga , Carbon Cycle
2.
J Chem Phys ; 160(18)2024 May 14.
Article En | MEDLINE | ID: mdl-38716851

We studied the origin of the vibrational signatures in the sum-frequency generation (SFG) spectrum of fibrillar collagen type I in the carbon-hydrogen stretching regime. For this purpose, we developed an all-reflective, laser-scanning SFG microscope with minimum chromatic aberrations and excellent retention of the polarization state of the incident beams. We performed detailed SFG measurements of aligned collagen fibers obtained from rat tail tendon, enabling the characterization of the magnitude and polarization-orientation dependence of individual tensor elements Xijk2 of collagen's nonlinear susceptibility. Using the three-dimensional atomic positions derived from published crystallographic data of collagen type I, we simulated its Xijk2 elements for the methylene stretching vibration and compared the predicted response with the experimental results. Our analysis revealed that the carbon-hydrogen stretching range of the SFG spectrum is dominated by symmetric stretching modes of methylene bridge groups on the pyrrolidine rings of the proline and hydroxyproline residues, giving rise to a dominant peak near 2942 cm-1 and a shoulder at 2917 cm-1. Weak asymmetric stretches of the methylene bridge group of glycine are observed in the region near 2870 cm-1, whereas asymmetric CH2-stretching modes on the pyrrolidine rings are found in the 2980 to 3030 cm-1 range. These findings help predict the protein's nonlinear optical properties from its crystal structure, thus establishing a connection between the protein structure and SFG spectroscopic measurements.


Carbon , Collagen Type I , Hydrogen , Hydrogen/chemistry , Carbon/chemistry , Collagen Type I/chemistry , Rats , Animals , Spectrum Analysis/methods
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731960

Due to a large number of harmful chemicals flowing into the water source in production and life, the water quality deteriorates, and the use value of water is reduced or lost. Biochar has a strong physical adsorption effect, but it can only separate pollutants from water and cannot eliminate pollutants fundamentally. Photocatalytic degradation technology using photocatalysts uses chemical methods to degrade or mineralize organic pollutants, but it is difficult to recover and reuse. Woody biomass has the advantages of huge reserves, convenient access and a low price. Processing woody biomass into biochar and then combining it with photocatalysts has played a complementary role. In this paper, the shortcomings of a photocatalyst and biochar in water treatment are introduced, respectively, and the advantages of a woody biochar-based photocatalyst made by combining them are summarized. The preparation and assembly methods of the woody biochar-based photocatalyst starting from the preparation of biochar are listed, and the water treatment efficiency of the woody biochar-based photocatalyst using different photocatalysts is listed. Finally, the future development of the woody biochar-based photocatalyst is summarized and prospected.


Carbon , Charcoal , Water Purification , Wood , Water Purification/methods , Charcoal/chemistry , Catalysis , Wood/chemistry , Carbon/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Adsorption
4.
Water Sci Technol ; 89(9): 2342-2366, 2024 May.
Article En | MEDLINE | ID: mdl-38747953

To investigate the influence of carbonization process parameters on the characteristics of municipal sludge carbonization products, this study selected carbonization temperatures of 300-700 °C and carbonization times of 0.5-1.5 h to carbonize municipal sludge. The results showed that with an increase in temperature and carbonization time, the sludge was carbonized more completely, and the structure and performance characteristics of the sludge changed significantly. Organic matter was continuously cracked, the amorphous nature of the material was reduced, its morphology was transformed into an increasing number of regular crystalline structures, and the content of carbon continued to decrease, from the initial 52.85 to 38.77%, while the content of inorganic species consisting continued to increase. The conductivity was reduced by 87.8%, and the degree of conversion of salt ions into their residual and insoluble states was significant. Natural water absorption in the sludge decreased from 8.13 to 1.29%, and hydrophobicity increased. The dry-basis higher calorific value decreased from 8,703 to 3,574 kJ/kg. Heavy metals were concentrated by a factor of 2-3, but the content of the available state was very low. The results of this study provide important technological support for the selection of suitable carbonization process conditions and for resource utilization.


Carbon , Sewage , Temperature , Sewage/chemistry , Carbon/chemistry , Waste Disposal, Fluid/methods , Time Factors , Metals, Heavy/chemistry
5.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Article En | MEDLINE | ID: mdl-38748375

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Carbon , Dopamine , Fluorescent Dyes , Limit of Detection , Molecularly Imprinted Polymers , Nifedipine , Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Nifedipine/chemistry , Nifedipine/analysis , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Dopamine/urine , Dopamine/analysis , Carbon/chemistry , Spectrometry, Fluorescence/methods , Humans , Polymerization , Molecular Imprinting , Tablets/analysis
6.
Mikrochim Acta ; 191(6): 310, 2024 05 08.
Article En | MEDLINE | ID: mdl-38714566

A ratiometric fluorescence sensor has been established based on dual-excitation carbon dots (D-CDs) for the detection of flavonoids (morin is chosen as the typical detecting model for flavonoids). D-CDs were prepared using microwave radiation with o-phenylenediamine and melamine and exhibit controllable dual-excitation behavior through the regulation of their concentration. Remarkably, the short-wavelength excitation of D-CDs can be quenched by morin owing to the inner filter effect, while the long-wavelength excitation remains insensitive, serving as the reference signal. This contributes to the successful design of an excitation-based ratiometric sensor. Based on the distinct and differentiated variation of excitation intensity, morin can be determined from 0.156 to 110 µM with a low detection limit of 0.156 µM. In addition, an intelligent and visually lateral flow sensing device is developed for the determination  of morin content in real samples with satisfying recoveries, which indicates the potential application for human health monitoring.


Carbon , Flavonoids , Limit of Detection , Nitrogen , Printing, Three-Dimensional , Quantum Dots , Spectrometry, Fluorescence , Flavonoids/analysis , Flavonoids/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Nitrogen/chemistry , Fluorescent Dyes/chemistry , Humans , Flavones
7.
Mikrochim Acta ; 191(6): 309, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714599

Copper-doped carbon dots and aminated carbon nanotubes (Cu-CDs/NH2-CNTs) nanocomposites were synthesized by a one-step growth method, and the composites were characterized for their performance. An electrochemical sensor for sensitive detection of bisphenol A (BPA) was developed for using Cu-CDs/NH2-CNTs nanocomposites modified with glassy carbon electrodes (GCE). The sensor exhibited an excellent electrochemical response to BPA in 0.2 M PBS (pH 7.0) under optimally selected conditions. The linear range of the sensor for BPA detection was 0.5-160 µM, and the detection limit (S/N = 3) was 0.13 µM. Moreover, the sensor has good interference immunity, stability and reproducibility. In addition, the feasibility of the practical application of the sensor was demonstrated by the detection of BPA in bottled drinking water and Liu Yang River water.


Benzhydryl Compounds , Copper , Electrochemical Techniques , Electrodes , Limit of Detection , Nanotubes, Carbon , Phenols , Water Pollutants, Chemical , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Nanotubes, Carbon/chemistry , Copper/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Quantum Dots/chemistry , Carbon/chemistry , Rivers/chemistry
8.
Anal Chim Acta ; 1307: 342627, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38719406

BACKGROUND: Hydrogen peroxide (H2O2) is an important reactive oxygen species (ROS) molecule involved in cell metabolism regulation, transcriptional regulation, and cytoskeleton remodeling. Real-time monitoring of H2O2 levels in live cells is of great significance for disease prevention and diagnosis. RESULTS: We utilized carbon cloth (CC) as the substrate material and employed a single-atom catalysis strategy to prepare a flexible self-supported sensing platform for the real-time detection of H2O2 secreted by live cells. By adjusting the coordination structure of single-atom sites through P and S doping, a cobalt single-atom nanoenzyme Co-NC/PS with excellent peroxidase-like activity was obtained. Furthermore, we explored the enzyme kinetics and possible catalytic mechanism of Co-NC/PS. Due to the excellent flexibility, high conductivity, strong adsorption performance of carbon cloth, and the introduction of non-metallic atom-doped active sites, the developed Co-NC/PS@CC exhibited ideal sensing performance. Experimental results showed that the linear response range for H2O2 was 1-17328 µM, with a detection limit (LOD) of 0.1687 µM. Additionally, the sensor demonstrated good reproducibility, repeatability, anti-interference, and stability. SIGNIFICANCE: The Co-NC/PS@CC prepared in this study has been successfully applied for detecting H2O2 secreted by MCF-7 live cells, expanding the application of single-atom nanoenzymes in live cell biosensing, with significant implications for health monitoring and clinical diagnostics.


Cobalt , Electrochemical Techniques , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Cobalt/chemistry , Humans , Electrochemical Techniques/methods , MCF-7 Cells , Carbon/chemistry , Limit of Detection , Biosensing Techniques/methods
9.
Luminescence ; 39(5): e4738, 2024 May.
Article En | MEDLINE | ID: mdl-38719576

A spectrofluorimetric method using fluorescent carbon dots (CDs) was developed for the selective detection of azelnidipine (AZEL) pharmaceutical in the presence of other drugs. In this study, N-doped CDs (N-CDs) were synthesized through a single-step hydrothermal process, using citric acid and urea as precursor materials. The prepared N-CDs showed a highly intense blue fluorescence emission at 447 nm, with a photoluminescence quantum yield of ~21.15% and a fluorescence lifetime of 0.47 ns. The N-CDs showed selective fluorescence quenching in the presence of all three antihypertensive drugs, which was used as a successful detection platform for the analysis of AZEL. The photophysical properties, UV-vis light absorbance, fluorescence emission, and lifetime measurements support the interaction between N-CDs and AZEL, leading to fluorescence quenching of N-CDs as a result of ground-state complex formation followed by a static fluorescence quenching phenomenon. The detection platform showed linearity in the range 10-200 µg/ml (R2 = 0.9837). The developed method was effectively utilized for the quantitative analysis of AZEL in commercially available pharmaceutical tablets, yielding results that closely align with those obtained from the standard method (UV spectroscopy). With a score of 0.76 on the 'Analytical GREEnness (AGREE)' scale, the developed analytical method, incorporating 12 distinct green analytical chemistry components, stands out as an important technique for estimating AZEL.


Azetidinecarboxylic Acid , Carbon , Dihydropyridines , Quantum Dots , Spectrometry, Fluorescence , Dihydropyridines/analysis , Dihydropyridines/chemistry , Carbon/chemistry , Azetidinecarboxylic Acid/analysis , Azetidinecarboxylic Acid/analogs & derivatives , Azetidinecarboxylic Acid/chemistry , Quantum Dots/chemistry , Green Chemistry Technology , Tablets/analysis , Fluorescent Dyes/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Molecular Structure
10.
Colloids Surf B Biointerfaces ; 238: 113928, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692175

In this research, four water-insoluble flavonoid compounds were utilized and reacted with arginine to prepare four carbonized polymer dots with good water-solubility in a hydrothermal reactor. Structural characterization demonstrated that the prepared carbonized polymer dots were classic core-shell structure. Effect of the prepared carbonized polymer dots on protein amyloid aggregation was further investigated using hen egg white lysozyme and human lysozyme as model protein in aqueous solution. All of the prepared carbonized polymer dots could retard the amyloid aggregation of hen egg white lysozyme and human lysozyme in a dose-depended manner. All measurements displayed that the inhibition ratio of luteolin-derived carbonized polymer dots (CPDs-1) was higher than that of the other three carbonized polymer dots under the same dosage. This result may be interpreted by the highest content of phenolic hydroxyl groups on the periphery. The inhibition ratio of CPDs-1 on hen egg white lysozyme and human lysozyme reached 88 % and 83 % at the concentration of 0.5 mg/mL, respectively. CPDs-1 also could disaggregate the formed mature amyloid fibrils into short aggregates.


Amyloid , Flavonoids , Muramidase , Polymers , Protein Aggregates , Muramidase/chemistry , Muramidase/metabolism , Humans , Polymers/chemistry , Polymers/pharmacology , Amyloid/chemistry , Amyloid/antagonists & inhibitors , Flavonoids/chemistry , Flavonoids/pharmacology , Protein Aggregates/drug effects , Animals , Chickens , Carbon/chemistry
11.
Anal Chim Acta ; 1306: 342615, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692795

The Caco-2 cells were used as intestinal epithelial cell model to illustrate the hyperuricemia (HUA) mechanism under the co-culture of the imbalanced intestinal microbiome in this work. The uric acid (UA) concentration in the HUA process was monitored, and could be up to 425 µmol/L at 8 h co-cultured with the imbalanced intestinal microbiome. Single-cell potentiometry based on ion-selective microelectrode was used to study extracellular calcium change, which is hypothesized to play an important role in the UA excretion. The potential signal of the calcium in the extremely limited microenvironment around single Caco-2 cell was recorded through the single-cell analysis platform. The potential signal of sharp decrease and slow increase followed within a few seconds indicates the sudden uptake and gradually excretion process of calcium through the cell membrane. Moreover, the value of the potential decrease increases with the increase of the time co-cultured with the imbalanced intestinal microbiome ranging from 0 to 8 h. The Ca2+ concentration around the cell membrane could decrease from 1.3 mM to 0.4 mM according to the potential decrease of 27.0 mV at the co-culture time of 8 h. The apoptosis ratio of the Caco-2 cells also exhibits time dependent with the co-culture of the imbalanced intestinal microbiome, and was 39.1 ± 3.6 % at the co-culture time of 8 h, which is much higher than the Caco-2 cells without any treatment (3.9 ± 2.9 %). These results firstly provide the links between the UA excretion with the apoptosis of the intestinal epithelial cell under the interaction of the imbalanced intestinal microbiome. Moreover, the apoptosis could be triggered by the calcium signaling.


Calcium , Carbon , Coculture Techniques , Gastrointestinal Microbiome , Microelectrodes , Potentiometry , Single-Cell Analysis , Humans , Caco-2 Cells , Calcium/metabolism , Carbon/chemistry , Apoptosis
12.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692791

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Anti-Bacterial Agents , Carbon , Copper , Neurotransmitter Agents , Carbon/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/urine , Anti-Bacterial Agents/blood , Neurotransmitter Agents/urine , Neurotransmitter Agents/analysis , Neurotransmitter Agents/blood , Porosity , Copper/chemistry , Humans , Nanospheres/chemistry , Colorimetry/methods , Ferric Compounds/chemistry , Biomimetic Materials/chemistry , Animals , Biosensing Techniques/methods , Chloramphenicol/analysis , Chloramphenicol/urine , Limit of Detection
13.
Int J Nanomedicine ; 19: 4045-4060, 2024.
Article En | MEDLINE | ID: mdl-38736656

Purpose: Dry eye disease (DED) is a multifactorial ocular surface disease with a rising incidence. Therefore, it is urgent to construct a reliable and efficient drug delivery system for DED treatment. Methods: In this work, we loaded C-dots nanozyme into a thermosensitive in situ gel to create C-dots@Gel, presenting a promising composite ocular drug delivery system to manage DED. Results: This composite ocular drug delivery system (C-dots@Gel) demonstrated the ability to enhance adherence to the corneal surface and extend the ocular surface retention time, thereby enhancing bioavailability. Furthermore, no discernible ocular surface irritation or systemic toxicity was observed. In the DED mouse model induced by benzalkonium chloride (BAC), it was verified that C-dots@Gel effectively mitigated DED by stabilizing the tear film, prolonging tear secretion, repairing corneal surface damage, and augmenting the population of conjunctival goblet cells. Conclusion: Compared to conventional dosage forms (C-dots), the C-dots@Gel could prolong exhibited enhanced retention time on the ocular surface and increased bioavailability, resulting in a satisfactory therapeutic outcome for DED.


Antioxidants , Carbon , Cornea , Dry Eye Syndromes , Hydrogels , Animals , Dry Eye Syndromes/drug therapy , Mice , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Antioxidants/administration & dosage , Hydrogels/chemistry , Hydrogels/administration & dosage , Hydrogels/pharmacokinetics , Cornea/drug effects , Drug Delivery Systems/methods , Disease Models, Animal , Biological Availability , Tears/drug effects , Tears/chemistry , Benzalkonium Compounds/chemistry , Benzalkonium Compounds/administration & dosage , Benzalkonium Compounds/pharmacokinetics , Female , Male , Temperature , Quantum Dots/chemistry
14.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732893

An abnormal level of dopamine (DA), a kind of neurotransmitter, correlates with a series of diseases, including Parkinson's disease, Willis-Ekbom disease, attention deficit hyperactivity disorder, and schizophrenia. Hence, it is imperative to achieve a precise, rapid detection method in clinical medicine. In this study, we synthesized nanocomposite carbon aerogels (CAs) doped with iron and iron carbide, based on algae residue-derived biomass materials, using Fe(NO3)3 as the iron source. The modified glassy carbon electrode (GCE) for DA detection, denoted as CAs-Fe/GCE, was prepared through surface modification with this composite material. X-ray photoelectron spectroscopy and X-ray diffraction characterization confirmed the successful doping of iron into the as-prepared CAs. Additionally, the electrochemical behavior of DA on the modified electrode surface was investigated and the results demonstrate that the addition of the CAs-Fe promoted the electron transfer rate, thereby enhancing their sensing performance. The fabricated electrochemical DA biosensor exhibits an accurate detection of DA in the concentration within the range of 0.01~200 µM, with a detection limit of 0.0033 µM. Furthermore, the proposed biosensor is validated in real samples, showing its high applicability for the detection of DA in beverages.


Biosensing Techniques , Carbon , Dopamine , Electrochemical Techniques , Electrodes , Iron , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Dopamine/analysis , Dopamine/chemistry , Carbon/chemistry , Iron/chemistry , Electrochemical Techniques/methods , Gels/chemistry , Limit of Detection , Photoelectron Spectroscopy , Nanocomposites/chemistry
15.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Article En | MEDLINE | ID: mdl-38690765

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Colloids , Environmental Restoration and Remediation , Groundwater , Groundwater/chemistry , Colloids/chemistry , Environmental Restoration and Remediation/methods , Polymers/chemistry , Charcoal/chemistry , Sand/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry
16.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Article En | MEDLINE | ID: mdl-38691765

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Biosensing Techniques , Carbon , Electrochemical Techniques , Iron , Luminescent Measurements , MicroRNAs , Quantum Dots , MicroRNAs/analysis , Carbon/chemistry , Iron/chemistry , Electrochemical Techniques/methods , Quantum Dots/chemistry , Humans , Biosensing Techniques/methods , Limit of Detection
17.
Anal Biochem ; 691: 115551, 2024 Aug.
Article En | MEDLINE | ID: mdl-38702023

A molecularly imprinted electrochemical sensor was facilely fabricated for the detection of thymol (THY). o-Phenylenediamine (oPD) was used as the functional monomer and electropolymerized on the surface of the glassy carbon electrode (GCE) by using THY as the templates. After the THY templates were removed with 50 % (v/v) ethanol, imprinted cavities complementary to the templates were formed within the poly(o-phenylenediamine) (PoPD) films. The resultant molecularly imprinted PoPD/GCE (MI-PoPD/GCE) was used for the detection of THY, and a wide linear range from 0.5 to 100 µM with a low limit of detection (LOD) of 0.084 µM were obtained under the optimal conditions. The developed MI-PoPD/GCE also displays high selectivity, reproducibility and stability for THY detection. Finally, the content of THY in the real samples was accurately determined by the as-fabricated MI-PoPD/GCE, demonstrating its high practicability and reliability.


Electrochemical Techniques , Molecular Imprinting , Phenylenediamines , Thymol , Phenylenediamines/chemistry , Thymol/analysis , Thymol/chemistry , Electrochemical Techniques/methods , Limit of Detection , Electrodes , Molecularly Imprinted Polymers/chemistry , Carbon/chemistry , Reproducibility of Results
18.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731398

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Adenosine Triphosphate , Carbon , Citric Acid , Mitochondria , Polyethyleneimine , Protein Kinases , Polyethyleneimine/chemistry , Carbon/chemistry , Adenosine Triphosphate/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Quantum Dots/chemistry , Animals , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans , Cell Line , Reactive Oxygen Species/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
19.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731499

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


CCAAT-Enhancer-Binding Protein-alpha , Carbon , Maillard Reaction , Mesenchymal Stem Cells , PPAR gamma , Sterol Regulatory Element Binding Protein 1 , Humans , Carbon/chemistry , PPAR gamma/genetics , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Quantum Dots/chemistry , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Sulfur/chemistry
20.
J Colloid Interface Sci ; 668: 618-633, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38696990

Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.


Carbon , Oxygen , Quantum Dots , Mice , Animals , Quantum Dots/chemistry , Carbon/chemistry , Humans , Catalysis , Oxygen/chemistry , Immunotherapy , Particle Size , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photochemotherapy , Mice, Inbred BALB C , Cell Line, Tumor , Iron/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Surface Properties , Cell Survival/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female
...